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Abstract. The systematics for binding energies per α-particle in N = Z nuclei, EBα/Nα, are studied up
to 164Pb. It is shown that, although a geometrical model can be used to explain the systematics for light
nuclei, the binding energy per α-particle exhibits structures which are due to the well-known shells of
the mean field of nucleons in nuclei. The overall dependence of EBα/Nα on Nα in N = Z nuclei (for
the ground-state masses) can be described in a liquid-drop model of α-particles. Conditions for a phase
change with the formation of an α-particle condensate, a dilute Bose gas in excited compound nuclei are
discussed for EBα/Nα = 0, at the thresholds. This is achieved when the binding energy per nucleon in
nuclei is equal to or smaller than in the α-cluster. At somewhat smaller excitation energies the appearance
of a Bose gas with a closed-shell core (N = Z, e.g. of 40Ca) is proposed within the same concept. The
experimental observation of the decay of such condensed α-particle states is proposed with the coherent
emission of several correlated α-particles not described by the Hauser-Feshbach approach for compound-
nucleus decay. This decay will be observed by the emission of unbound resonances in the form of 8Be and
12C∗(0+

2 ) clusters.

PACS. 21.10.-k Properties of nuclei; nuclear energy levels – 21.60.Gx Cluster models

1 Introduction

The binding energies of nuclei as a function of mass num-
ber show a peculiar systematic behaviour, which often is
discussed to be related to the formation of α-clusters. In
fact, the specific dependence of the nucleon-nucleon force
on the spin and isospin quantum numbers [1], both cou-
pled to zero, produces very strong binding in the spin- and
isospin-saturated α-particle substructures. Its high bind-
ing energy and the internal structure and symmetry give
a 30% higher density than the usual central density in
nuclei. The α-particle is the unique cluster subsystem in
nuclei.
This feature is well known from the early history of

nuclear science, but it is also borne out in the most re-
cent model-independent calculations of nuclear structure,
like in the anti-symmetrised molecular dynamics (AMD)
calculations of Horiuchi and Kanada-Enyo [2–5], and in a
related approach by Feldmeier et al. [6,7]. In these calcu-
lations the density distributions of the nucleons are ob-
tained and the ground states of light nuclei already show
strong clustering effects. Even more spectacular are the
results for loosely bound nuclear systems [4,5], where α-
clusters appear naturally as dominant substructures. This

a e-mail: oertzen@hmi.de

work has established that α-clusters have a decisive role in
the description of light nuclei, in particular for the loosely
bound neutron-rich isotopes. The extra neutrons are found
in molecular orbitals of two α-particles forming a bound
molecular two-centre system for the beryllium isotopes [8].

Furthermore, the α-particle is the important ingredi-
ent in the concept of the Ikeda diagram [9–11], where
highly clustered states (e.g., linear chains) are predicted
at excitation energies around the energy thresholds for the
decomposition into specific, constituent cluster channels.

In the present work the dynamics of α-clustering in
excited states of heavier N = Z nuclei will be explored.
For this purpose the systematics of binding energies per
α-particle in nuclei EBα/Nα are reviewed in sect. 2. In
sect. 2.2 a liquid-drop model (LD) based on α-particles for
N = Z nuclei is explored. Some concepts needed to discuss
dilute (super-fluid) multi-α-cluster systems, a Bose gas,
are exemplified in sect. 3. In sect. 4 some experiments for
the formation of nuclei in states with an α-particle gas are
proposed. This Bose gas of α-particles has the properties
of a condensate because of the very large de Broglie wave-
length of the α-particles and their coherent properties.
The observation of α-particle super-fluidity in the decay
of compound nuclei at the appropriate excitation energy is
proposed via the coherent and enhanced emission of mul-
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tiple α-particles in the form of 8Be and 12C∗(0+2 ) clusters
(see also [12,13]).

2 Binding energy of α-particles in N = Z

nuclei

2.1 Binding between α-particles: a historical overview

Historically, the first models of the nucleus before the
discovery of the neutron were based on α-particles [14,
15]. Of interest for our study is the work of Hafstad and
Teller [16]. There it was noticed that the binding energy
of the α-particles in light N = Z nuclei show a linear
dependence, if plotted as a function of the number of
bonds, which can be deduced by counting the touching
points in a geometrical model. The number of bonds is
obtained by placing the α-particles in a close-packing ar-
rangement, as done for atoms in a cubic-centred arrange-
ment in solid-state physics. Later, α-particles as a basic
structure for N = Z nuclei have been used extensively
in nuclear models. As the most successful approach we
can consider the Bloch-Brink–α-cluster model [17–19]. In
the AMD approach the ground-state binding energies, of
e.g. 12C and 16O, are well reproduced in a basis using α-
particles, if, in addition, a mixture with shell model con-
figurations is introduced [20]. In this work the role of the
spin-orbit force in breaking the α-cluster structure in the
ground states is illustrated.
We follow the concept to calculate the nuclear binding

energy per bond using a geometrical model for N = Z
nuclei, with the close packing of rigid spheres. The value
due to the nuclear binding per bond has to be obtained
by subtracting the Coulomb energy from the total binding
energy. The binding energy per α-particle bond is obtained
by using the total binding energy (Et

B) from the mass
tables and calculating the Coulomb energy, Et

c, using the
liquid-drop formula with Et

c = −0.715Z
2/A1/3. Thus, the

intrinsic nuclear binding energy divided by the number of
bonds, Nb, between the α-particles is obtained,

ENb
=
[EtB − E

t
c − E

α
BNα]

Nb
, (1)

where EαB (= 28.3MeV) is the binding energy of the α-
particle and Nα is the number of α-particles. The num-
ber of bonds is determined from the number of points,
at which, for a geometrical model, spheres representing α-
particles, would touch. This number can vary between par-
ticular geometrical arrangements, because not only spher-
ical shapes appear (like in the case of 28Si). We find with
some small variations that the binding energy per bond is
around 5MeV in light nuclei, and approximately 6.3MeV
in medium mass and heavier nuclei, as shown in table 1.
Counting the number of bonds works well for the light-
mass nuclei, 16O to 40Ca, and has been tried also for heavy
nuclei like 100Sn or even 164Pb. However, the number of
bonds for nuclei heavier than 52Fe can only be estimated
and there is often more than one way of summing the
bonds, which are given in parentheses in table 1. The

Table 1. The nuclear binding energy per bond, ENb
, for

α-particles in close geometrical packing in N = Z nuclei;
Nα —number of α-particles, Nb —number of α-α bonds, EtB
—total binding energy, Etc —Coulomb energy; all energies are
quoted in MeV.

Nuclide Nα, Nb EtB EtB − E
t

c ENb

4He 1, 0 28.3 – –
12C 3, 3 92.16 103.45 6.18
16O 4, 6 127.6 145.8 5.43
20Ne 5, 9 160.7 186.9 5.04
24Mg 6, 12 197.2 233.9 5.34
28Si 7, 15 236.5 282.7 5.64
32S 8, 18 271.8 332.1 5.87
36Ar 9, 21 306.7 376.9 5.82
40Ca 10, 24 342.0 425.8 5.95
52Fe 13, 33 447.7 577.3 6.34
56Ni 14, 36(37) 483.9 630.6 6.5(6.33)
72Kr 18, 48(52) 607.1 832.0 6.4(5.92)
80Zr 20, 54(60) 669.8 935.7 6.8(6.16)
100Sn 25, (80) 824.5 1210.1 (6.28)
164Pb 41, (130) 1200.1 2079.9 (7.07)

masses have been taken from ref. [21], for 164Pb from a
theoretical study of the A = 164 region [22].
Counting the number of bonds may lose its meaning for

the heavier nuclei, because geometrical considerations are
less valid, and many configurations of “close packing” be-
come possible. However, in an α-particle liquid consisting
of spheres, the touching points and the binding effects for
the spheres inside the configuration should correspond to a
saturation value. Therefore, a liquid-drop model based on
α-particles for the heavier N = Z nuclei can be discussed.
Of further interest is the total binding energy of all α-

particles in an N = Z nucleus. For this purpose the bind-
ing energy per α-particle, EBα/Nα, is calculated (fig. 1),

EBα/Nα = [E
t
B(N,Z)−NαE

α
B ]/Nα. (2)

The same quantity has also been calculated for a core of
40Ca (or 52Fe), with the number of α-particles outside the

core being defined as N
′

α, see fig. 1:

E
40Ca
Bα (N

′

α) =
[

EtB(N,Z)− E
40Ca
B (N,Z)− (Nα − 10)E

α
B

]

/(Nα − 10).

(3)

The excitation energies where this value approaches zero
—a point where an α-particle condensate can form— will
be discussed below, see sect. 3.
Here the systematics of the binding energies of N = Z

nuclei, as compiled by D.H.E. Gross [23], may be men-
tioned, where α-particle substructures are also invoked.
Contrary to the claim made in ref. [23], the systematics
of binding energies (of, e.g., 2p or 2n pairs) of α-particles,
show irregularities for “magic” numbers which, however,
fail to fit to “magic” numbers of the close-packing con-
figurations, like N = 7, 13, 19, cited in general for van
der Waals “cluster physics” (see, for example, ref. [24]).
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Fig. 1. The binding energy per α-particle in N = Z nuclei.
The lines are drawn to connect the points. The same quantities
are shown under the assumption of two different heavy clusters
as cores: 40Ca and 52Fe as indicated.

This failure is decisive. The irregularities appear at the
“magic” numbers which are well known in nuclear physics
and describe features of the mean-field shell model of nu-
cleons. The numbers in both models are unique and a
deviation by one unit is enough to rule out a model. For
the close packing of α-particles in the ground states of
nuclei the anti-symmetrisation of the nucleons and appro-
priate symmetry transformations produce wave functions
which are equivalent to a shell model basis. This point has
been discussed repeatedly. Therefore, in close packing of
α-particles which are mutually overlapping, eventually the
magic numbers of the nuclear shell model must prevail.

2.2 Liquid-drop model for N = Z nuclei with
α-particles

We shortly discuss a liquid-drop model (LDM) of nu-
clei consisting of α-particles. Here only an approximate
expression which describes the macroscopic trend of the
binding energies, as used in textbooks [25], is of interest.
The aim is to test the validity of the concept of bonds
between α-particles in a liquid.
The binding energy of N = Z nuclei is expressed as

a function of the number of α-particles equivalent to the
standard LDM [25]. The expression will be functionally
the same as for the LDM for nucleons without the asym-
metry term:

EtB = aV (α)Nα − aSur(α)(Nα)
2/3 + Etc , (4)

where aV (α) and aSur(α) are the coefficients for the vol-
ume and surface energies, respectively. Dividing by the
number of α-particles, Nα, the general trend, as shown in
fig. 1, should be obtained. A fit to the points will be only
approximate and needs a more complicated functional de-
pendence to describe the whole range of masses. The val-

ues of the constants which are obtained from an approxi-
mate fit to the total binding energies are

aV (α) = 62MeV (5)

and
aSur(α) = 42.1MeV. (6)

For the interpretation of these values, the rescaling of the
coefficients in the LD mass formula needs the replacement
of the total number of nucleons (A) by (A/4). This gives
15.5MeV for the volume coefficient, aV . This value is very
close to the standard value (aV = 15.6MeV) of the LD
model for nucleons used in the textbooks like ref. [25],
this is in fact a trivial agreement. Similarly for the surface
term, aSur(α), the coefficient with the factor (A/4)

2/3 can
be calculated, which gives the coefficient 16.7MeV close,
to the cited [25] value of 17.2MeV.
The saturation value for the volume term can be calcu-

lated (aV (α) = 62MeV): the central α-particle is always
surrounded by 12 particles, producing Nb = 12. Divid-
ing the cited saturation value with this number we obtain
5.16MeV for the α-α bond energy. This value is indeed
close to the values given in table 1. Take 164Pb, Nα = 41.
The total surface energy using eq. (4) is 499MeV, which is
divided by 5.16MeV to obtain the number of free surface
bonds Nb = 97. To complete the result for

164Pb, for the
volume we have 12 × 41 = 492 bonds and approximately
97 free bonds for the energy to be subtracted (unsaturated
bonds at the surface, see also table 2).
Similar values are obtained when we apply the model

to 52Fe, the most symmetric and compact cluster config-
uration with 13 α-particles. The outer α-particles have 7
missing bonds each (in this case it is easy to count the
bonds to obtain the surface-energy term). With the total
nuclear binding given in table 1, the energy per bond is
calculated as 6.21MeV in close agreement with the value
given in table 1.
In conclusion, it may be stated that the concept of

bonds in a liquid of α-particles seems to apply to the
ground-state masses of nuclei in a reasonable way. The
ground states of nuclei are rather well described by a
densely packed system of α-clusters (a liquid), which
are partially dissolved due to anti-symmetrisation and to
the spin-orbit interaction [20]. Actually, in the study of
ref. [26] it is shown that in nuclear matter at high den-
sity the α-particle phase is destroyed, whereas the pairing
correlations survive. We may conclude that the α-clusters
with a changed internal structure inside nuclear matter co-
exist with the fermion gas consisting of nucleons, and the
values of the cited bond energies represent some effective
value.

3 Formation of condensates

From fig. 1 we can deduce the value for the excitation
energy where the nucleus will completely decay into α-
particles by multiplying the values of EBα/Nα in fig. 1
with Nα. At this energy the formation of an α-particle



136 The European Physical Journal A
nu

cl
eo

ns
ki

n
E

EB

EB

G∆

0

nucleon

E (free nucleons)kin

EB
nucleon
(for Ex in Nuclei)

(α)EB
nucleon

(Nuclei,gs)

Fig. 2. Schematic illustration of the values of energies of free
nucleons and alternatively their binding energies in nuclei,
which is generally larger than in α-clusters (7.07MeV). The
difference ∆G between the binding energies decreases with ex-
citation energy in nuclei, at a critical value the two binding
energies become equal, a collective state with an α-particle gas
can be formed.

condensate is expected. In the ground states of nuclei the
intrinsic structure of α-clusters are certainly very different
from that of free α-particles, a fact widely discussed in the
literature.
We want to discuss the formation of a free α-particle

gas, where the average distance between α-particles is
much larger and the corresponding nucleon density will
be well below normal nuclear densities. In fact, in a theo-
retical investigation of Bose-Einstein condensates in nuclei
by Tohsaki, Schuck et al. [27–29], they find that close to
the thresholds for multi α-particle decays, the states with
α-clusters have a much larger radial extension than the
ground states. From the view point of the fermion gas the
appearance of such states will depend on the temperature
(i.e., excitation energy, E∗

x) of the nucleus. The concept
of phase transitions with two components can be used, a
concept well established in thermodynamics of composite
systems in statistical physics [30].
The basic equation is the “reaction” of four “free”

nucleons (two protons and two neutrons coupled to to-
tal values of spin and isospin of zero) forming α-clusters:
(N1+N2+N3+N4)←→ α-particle+28.3MeV. The free
nucleons, Ni, should have a definite volume and pressure,
in order to define thermodynamic quantities and where the
density allows the occurrence of the mentioned reaction.
This can only be done in a model like AMD [5], where a
certain number of nucleons are confined in a volume with
a positive kinetic energy, as suggested in fig. 2. In this
model a cooling method is applied to find the states of
the lowest energy. The energy of the nucleons inside the
nucleus is defined by the volume, as the Fermi energy de-

Table 2. Alpha-particle binding and excitation energies for the
condensation condition in nuclei with N = Z; Nα —number
of α-particles, EtB/Nn —binding energy per nucleon, EBα/Nα
—binding energy per α-particle, Ecritx —condensation energy.
The last column shows the values for the case of a 40Ca-cluster
core, see also table 1. All energies in MeV.

Nuclide Nα EtB EtB/Nn EBα/Nα Ecritx Ecritx

4He 1 28.3 7.073 – – (40Ca)
12C 3 92.16 7.680 2.425 7.27 –
16O 4 127.6 7.976 3.609 14.44 –
20Ne 5 160.7 8.032 3.83 19.17 –
24Mg 6 197.2 8.260 4.787 28.72 –
28Si 7 236.5 8.447 5.495 38.47 –
32S 8 271.8 8.493 5.677 45.41 –
36Ar 9 306.7 8.519 5.78 52.02 –
40Ca 10 342.0 8.551 5.910 59.10 –
52Fe 13 447.7 8.609 6.143 79.86 –
56Ni 14 483.9 8.642 6.275 87.85 –
72Kr 18 607.1 8.432 5.433 97.8 87.78
80Zr 20 669.8 8.371 5.192 103.8 90.38
100Sn 25 824.5 8.244 4.684 117.1 97.65
112Ba 28 894.8 7.99 3.665 102.6 68.79
144Hf 36 1090.9 7.577 2.074 74.6 19.68
164Pb 41 1200.1 7.317 0.973 39.9 −25.21

duced from the nuclear radius in text books [25]. In the
AMD approach a certain phase with α-clusters appears,
before the formation of the ground states. At the end,
the formation of normal nuclei with a binding energy per
nucleon higher than in the α-cluster is usually observed.
For weakly bound nuclei the α-clusters are obtained in a
“natural” way. With the binding energy of nucleons in the
α-particle of 7.073MeV, the nucleons would preferentially
form an α-cluster phase in normal nuclei, only with in-
creasing temperature of the nucleus, e.g. with increasing
excitation energy. This excitation energy becomes rather
low in neutron-rich light exotic nuclei (where clustering
appears as the dominant structure [5]) and in very heavy
N = Z nuclei.
For the nucleons confined in the nuclear volume we

apply the concepts of statistical physics for the reaction
4N - α-particle. The rate of the reaction is governed by
the free energy, G, and the chemical potentials, µα and
µn. The chemical potentials are defined as µi = δG/δNi,
i = n, α. The thermodynamic free energy depends on the
number of nucleons, Nn and on Nα, with G = G(Nn, Nα).
The change of the free energy becomes

∆G = ∆Nαµα + 4∆Nnµn. (7)

For the complete phase transition a minimum value of the
free energy is needed with the condition ∆G = 0. In the
nuclear medium ∆G is the difference between the binding
energy of the nucleon in the free α-particle and in the
nuclear medium, as illustrated in fig. 2.
The kinetic energy of the nucleons determines the tem-

perature, T . However, we will use the temperature of the
nucleus, t, related to its excitation energy. In the normal
case of a mixed system the relative abundance of Nα to
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Nn is a function of temperature (in our case excitation
energy) and is obtained through the expression

Nα

(Nn)4
= K = exp

(

−
∆G(t)

RT (t)

)

. (8)

The constant K is to be determined by experimental ob-
servation (the usual coefficient R in statistical physics ap-
pears). For the case of negative ∆G(t), a decrease of the
free energy (corresponding to a large value of the constant
K) gives a high density of the α-particle reaction products.
A positive value corresponds to an energetic disadvantage
for the reaction, resulting in a low density of reaction prod-
ucts. In the case of nuclei, the nucleons are embedded in
the nuclear medium and are confined in the nuclear poten-
tial created by the mean field of all nucleons. The binding
energy per nucleon in nuclei is around 8MeV or more
(dependent on the size of the nucleus and its excitation
energy). The nucleons are usually more bound in the nu-
clear medium (ground states of stable nuclei) than in the
α-clusters. The relative positions of these various regimes
are illustrated in fig. 2. The change in the free energy of
the nucleons in the medium is now the difference between
the binding energy in the nucleus and in the α-clusters.
Actually, because the chemical potential of the nucleons
will depend on the excitation energy in the nucleus (on its
temperature), we put this dependence in the expression
for ∆G(t).
Alpha-cluster formation is expected if 4Et

B/Nn is less
than or equal to the total binding energy of four nucle-
ons in the α-cluster. As the binding energy per nucleon
becomes equal or smaller than in the α-particle, a new
phase will be formed, a strongly interacting Bose gas. For
binding energies of the nucleons close (larger) to that in
the α-particle it becomes possible to form a mixed phase
of α-cluster states (liquid) and of nucleons.
We summarize that the α-condensation condition is

given by EtB/Nn(E
crit
x ) ≥ 7.07MeV, which is the bind-

ing energy of nucleons in the α-particle and is the same
as ∆G(t) = 0. Alternatively, the phase transition will be
achieved at excitation energies of the nucleus, E∗

x, corre-
sponding to the thresholds where the all clusters become
unbound, the condition being that EBα(N,Z) = 0. This
is the original concept of the Ikeda diagram. The Ikeda
diagram [9] gives a phenomenological condition for the
appearance of clustered states (with the inclusion of other
clusters like 12C, 16O, etc.) in nuclei. In fig. 2 the relative
values of the binding energies are shown for free nucleons
and for nuclei, and in α-particles. The binding energy of
nucleons (in fig. 2 Et

B/Nn = EBnucleon) is usually larger
than in the α-particle. The condition for the condensation
energy is Econdx ≥ Ecritx . The values for different nuclei
relevant to this concept are given in table 2. We can state
that the Ikeda diagram with α-particles can be deduced
from a thermodynamic consideration.
Most important for the properties of the α-particle gas

is that they do not represent the “ideal” gas, they inter-
act. Two α-particles form as the lowest state, the ground
state of 8Be, a resonance at E∗

x = 92 keV. We can calcu-

late the de Broglie wavelength λ = h/
√

(2µE∗

x) for this

case and have λ = 67 fm (relative motion between two
α-particles). If for higher excitation we incorporate the
2+ at 3.04MeV the value of λ is still 12.4 fm. Similarly,
three α-particles can form the “famous” state just above
the three-α-particle threshold in 12C, the 0+ at 7.654MeV
(288 keV above the threshold of 7.346MeV). With these
values for three α-particles we again get a similarly large
de Broglie wavelength of relative motion. Also the third
0+3 at 10.3MeV excitation recently discussed in ref. [31]
can participate in the formation of a multi-α-particle cor-
relation, overall we have values for λ of the same order of
magnitude as for 8Be. Because of these values the states
at the binding energy threshold consisting of α-particles
will form coherent super-fluid states. The resonant states
in 8Be and 12C act in a similar way as in the residual
interaction in formation of the superfluid neutron pairing
states, see ref. [1], volume II. The calculations of Tohsaki,
Schuck et al. based on an α-α potential reproducing the
states of 8Be, gives details on such states, which are lo-
cated just below or above the thresholds for some light
nuclei.
Quite interesting conditions appear for states with a

boson gas confined in a volume by an additional potential
defined by a strongly bound core. We have considered here
the nuclei 40Ca and 52Fe as cores, because of their large
binding energies per nucleon. The relevant quantities of
the binding energy per α-particle for these cases have been
given in fig. 1 and the values of the critical excitation
energies are also listed in table 2. The last entry in the last
column for the 40Ca core (for 164Pb) has a negative sign,
indicating that this nucleus, and somewhat lighter nuclei
(actually above Z = 72), are unstable in their ground
states relative to “Coulomb explosion”. These nuclei also
become unbound for the last proton or α-particle already
at smaller Z-values.

4 Formation and coherent decay of

multi-α-particle states

For the formation of heavy N = Z compound nuclei, the
heaviest combination of stable targets and projectiles is
40Ca + 40Ca giving 80Zr. For even heavier systems we will
have to rely on beams of unstable nuclei, one of the best
choices appears to be a 72Kr beam, which has a good
chance of being produced in the future with usable in-
tensities. The compound nucleus with a 40Ca target will
be 112Ba (Q = −52.54MeV). However, an excess of two
or four neutrons (with a more intense beam) would most
likely not destroy the special states discussed here. The ex-
cess neutrons will be placed in quantum orbits around the
clusters, for example like in the 9–12Be isotopes forming
molecular states. Because of the fact that the compound
nucleus is very far off-stability the reaction Q-value be-
comes very negative. With an incident energy close to
the Coulomb barrier, the final excitation energy can be
rather moderate. These compound nuclei will have very
small Q-values for the emission of protons or for several
α-particles. Heavier compound nuclei may even be unsta-
ble to charged-particle emission in their ground states.
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in 100Sn. States of low excitation energy, formed by the mean
field of nucleons makes the potentials for neutrons and protons
rather different due to the Coulomb interaction. Thus, the for-
mation of α-particle structures is strongly suppressed. At the
critical excitation energy of 97MeV (for 100Sn, see fig. 1), a
collective state of bosons with α-particles occupying the same
orbit outside a 40Ca core will be energetically favoured.

In fig. 3 we illustrate the situation for 100Sn, which
can be formed in a reaction with a 72Kr beam and a
28Si target. At excitation energies of 80MeV or more
(for thresholds discussed earlier) many compound nuclear
(CN) states will exist consisting of different configurations
of the α-particle gas plus a core. Here again the thresh-
old rules apply with respect to excitation energies. We
must expect many overlapping states (with a large decay
width), which will interact coherently (see ref. [13]). The
same compound states can be occupied with a different
number of α-particles, these will interact through the 0+

and 2+ resonances of 8Be and 12C, depending on the ex-
citation energy of the state. The first experimental obser-
vation of such decays with different sharing of α-particles
and the resonances can actually be found in refs. [12,13].
The CN states have a large decay width due to α-particle
decay channels and many other decay channels.

We are interested in the coherent multiple α-particle
emission. Due to the coherent properties of the threshold
states consisting of α-particles interacting coherently with
a large de Broglie wavelength, the decay of the CN will
not follow the Hauser-Feshbach assumption of the statis-
tical model: that all decay steps are statistically indepen-
dent. After emission of the first α-particle, the residual
nucleus contains the phase of the first emission process;
the subsequent decays will follow with very short time
delays related to nuclear reaction times (or the inverse,
decays), favouring the formation of resonances like the
12C?(0+2 , 2

+
2 , 0

+
3 ) states.

Another view for the α-gas is the concept of a collective
super-fluid state with a broken symmetry, the α-particle
number, a concept much used for neutron pairing in super-
fluid states in nuclei [1,32]. For the two-neutron pairing

states in heavy nuclei, the transfer of neutron pairs be-
tween super-fluid nuclei [32,33] is strongly enhanced. The
analogy to the enhancement of transfer of correlated neu-
tron pairs [32,33] is the multiple emission of α-particles
as a collective transition (changing the particle number as
a collective variable) between nuclei with different num-
bers of α-particles, from compound nuclei with super-fluid
properties. In our case the change of the α-particle num-
ber of the condensate must be considered as a strongly
enhanced collective transition between the collective α-
condensate states, a feature discussed for α-particle trans-
fer between very heavy nuclei in the valley of stability in
ref. [34]. Thus the observation of multiple emission of α-
particles from the compound state with the mentioned co-
herent properties can be proposed as the signature for the
observation of the collective Bose gas. More specifically,
the emission should be strongly enhanced, relative to the
statistical model prediction, in the latter case the emis-
sion of many α-particles would be observed into different
angles [13]. The coherent emission should occur into the
same (identical) angle. This will lead to the observation
of unbound resonances such as 8Be(0+, 2+) and the ex-
cited states of 12C, namely 12C?(0+2 , 0

+
3 )-clusters. Such a

feature may in fact have been observed in the recent data
of refs. [12,13].
Another decay mode, which must be mentioned here

is the possible decay of the heavier N = Z nuclei by
Coulomb explosion. This process is observed in highly
charged van der Waals clusters as discussed by Last and
Jortner [35]. In our case the simultaneous emission of α-
particles is expected with characteristics very different
from standard compound-nucleus decay.

5 Discussion and conclusions

Here some final remarks to summarise the proposed sce-
nario of clustering in N = Z nuclei are given. First, we
emphasise that only nuclei with N = Z are considered. In
the ground states the correlations between four nucleons
give rise to some clustering related to α-particles, in such
a way that a liquid-drop model can be used in an approx-
imate way for the description of the overall dependence of
binding energies on mass number expressed as the number
of α-particles.
Based on the success of various models like the Brink-

Bloch model [17–19] we have used the concept that α-
clusters do exist with some probability inside particular
nuclear states in light nuclei and, although with a strongly
reduced probability, also in heavier nuclei. They form a
mixture of nucleons and α-particles with a smaller chemi-
cal potential for the nucleons in the latter. In some exotic
nuclei and at higher excitation energies the binding en-
ergy per nucleon approaches the value in the α-cluster. A
thermodynamic phase transition from fermions to a gas
of free α-particles is proposed here, the transition is ex-
pected to occur with increasing temperature at excitation
energies reaching the cluster thresholds (as proposed in
the Ikeda diagram). This transition is very different from
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those discussed (and observed) due to the pairing inter-
action between nucleons in nuclei [1] which occurs with
decreasing temperature (decreasing excitation energies).
At the critical excitation energy for the condensation

into “free” α-particles (strongly interacting via the cited
resonances), these represent a Bose gas with a very large
de Broglie wavelength of relative motion (15–40 fm). This
value is much larger than the distance between two α-
particles and covers the whole volume of the nucleus. This
may give the gas the properties of a Bose-Einstein conden-
sate as discussed by P. Schuck and collaborators [27,28].
In their work the Bose gas of interacting α-particles also
appears at the thresholds for α-particle decomposition and
forms nuclear states with a much larger radial extension;
the volume of the nucleus may be easily increased by a fac-
tor two. However, the Coulomb interaction limits the sta-
bility of such systems to mass 40, as discussed in ref. [28].
However, the decay of such states, formed in nuclear re-
actions in heavier compound nuclei which are unbound,
may be observed via the correlated emission of several
α-particles forming excited resonant states which form a
dilute α-gas, like the 8Be(0+, 2+) and the unbound states
like the 12C?(0+2 , 0

+
3 )-clusters. Their emission probability

must be compared with that of normal nuclear states.
There remain many open theoretical problems in the

study of the α-particle gas in nuclei. The experimental
tools for such studies are available, the work by Kokalova
et al. [12,13] shows that the observable effects are large.

The author is indebted to C. Wheldon and Tz. Kokalova for a
critical reading of the manuscript, as well as to P. Schuck and
N. Itagaki for discussions.
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